488 research outputs found

    Nonequilibrium relaxation analysis of a quasi-one-dimensional frustrated XY model for charge-density waves in ring-shaped crystals

    Full text link
    We propose a model for charge density waves in ring shaped crystals, which depicts frustration between intra- and inter-chain couplings coming from cylindrical bending. It is then mapped to a three dimensional uniformly frustrated XY model with one dimensional anisotropy in connectivity. The nonequilibrium relaxation dynamics is investigated by Monte Carlo simulations to find a phase transition which is quite different from that of usual whisker crystal. We also find that the low temperature state is a three dimensional phase vortex lattice with a two dimensional phase coherence in a cylindrical shell and the system shows power law relaxation in the ordered phase.Comment: 6 pages, 6 epsfiles, revised versio

    Quenching of phase coherence in quasi-one dimensional ring crystals

    Get PDF
    The comparison of the single-particle (SP) dynamics between the whisker and ring NbSe3_3 crystals provides new insight into the phase transition properties in quasi-one-dimensional charge density wave (CDW) systems.Comment: 9 pages, 4 figure

    Direct observation of high-speed plasma outflows produced by magnetic reconnection in solar impulsive events

    Full text link
    Spectroscopic observations of a solar limb flare recorded by SUMER on SOHO reveal, for the first time, hot fast magnetic reconnection outflows in the corona. As the reconnection site rises across the SUMER spectrometer slit, significant blue- and red-shift signatures are observed in sequence in the Fe XIX line, reflecting upflows and downflows of hot plasma jets, respectively. With the projection effect corrected, the measured outflow speed is between 900-3500 km/s, consistent with theoretical predictions of the Alfvenic outflows in magnetic reconnection region in solar impulsive events. Based on theoretic models, the magnetic field strength near the reconnection region is estimated to be 19-37 Gauss.Comment: 5 pages, 6 color figures, 1 animation onlin

    Comparison of transient horizontal magnetic fields in a plage region and in the quiet Sun

    Full text link
    Properties of transient horizontal magnetic fields (THMFs) in both plage and quiet Sun regions are obtained and compared. Spectro-polarimetric observations with the Solar Optical Telescope (SOT) on the Hinode satellite were carried out with a cadence of about 30 seconds for both plage and quiet regions located near disk center. We select THMFs that have net linear polarization (LP) higher than 0.22%, and an area larger than or equal to 3 pixels, and compare their occurrence rates and distribution of magnetic field azimuth. We obtain probability density functions (PDFs) of magnetic field strength and inclination for both regions.The occurrence rate in the plage region is the same as for the quiet Sun. The vertical magnetic flux in the plage region is ~8 times larger than in the quiet Sun. There is essentially no preferred orientation for the THMFs in either region. However, THMFs in the plage region with higher LP have a preferred direction consistent with that of the plage-region's large-scale vertical field pattern. PDFs show that there is no difference in the distribution of field strength of horizontal fields between the quiet Sun and the plage regions when we avoid the persistent large vertical flux concentrations for the plage region. The similarity of the PDFs and of the occurrence rates in plage and quiet regions suggests that a local dynamo process due to the granular motion may generate THMFs all over the sun. The preferred orientation for higher LP in the plage indicates that the THMFs are somewhat influenced by the larger-scale magnetic field pattern of the plage.Comment: 11 pages, 7 figures, A&A accepte

    Nanoflare Evidence from Analysis of the X-Ray Variability of an Active Region Observed with Hinode/XRT

    Get PDF
    The heating of the solar corona is one of the big questions in astrophysics. Rapid pulses called nanoflares are among the best candidate mechanisms. The analysis of the time variability of coronal X-ray emission is potentially a very useful tool to detect impulsive events. We analyze the small-scale variability of a solar active region in a high cadence Hinode/XRT observation. The dataset allows us to detect very small deviations of emission fluctuations from the distribution expected for a constant rate. We discuss the deviations in the light of the pulsed-heating scenario.Comment: 6 pages, 4 figure

    Polar Field Reversal Observations with Hinode

    Full text link
    We have been monitoring yearly variation in the Sun's polar magnetic fields with the Solar Optical Telescope aboard {\it Hinode} to record their evolution and expected reversal near the solar maximum. All magnetic patches in the magnetic flux maps are automatically identified to obtain the number density and magnetic flux density as a function of th total magnetic flux per patch. The detected magnetic flux per patch ranges over four orders of magnitude (101510^{15} -- 102010^{20} Mx). The higher end of the magnetic flux in the polar regions is about one order of magnitude larger than that of the quiet Sun, and nearly that of pores. Almost all large patches (≄1018 \geq 10^{18} Mx) have the same polarity, while smaller patches have a fair balance of both polarities. The polarity of the polar region as a whole is consequently determined only by the large magnetic concentrations. A clear decrease in the net flux of the polar region is detected in the slow rising phase of the current solar cycle. The decrease is more rapid in the north polar region than in the south. The decrease in the net flux is caused by a decrease in the number and size of the large flux concentrations as well as the appearance of patches with opposite polarity at lower latitudes. In contrast, we do not see temporal change in the magnetic flux associated with the smaller patches (<1018 < 10^{18} Mx) and that of the horizontal magnetic fields during the years 2008--2012.Comment: 21 pages, 7 figures. Accepted for publication in Ap

    Drift-Kinetic Modeling of Particle Acceleration and Transport in Solar Flares

    Full text link
    Based on the drift-kinetic theory, we develop a model for particle acceleration and transport in solar flares. The model describes the evolution of the particle distribution function by means of a numerical simulation of the drift-kinetic Vlasov equation, which allows us to directly compare simulation results with observations within an actual parameter range of the solar corona. Using this model, we investigate the time evolution of the electron distribution in a flaring region. The simulation identifies two dominant mechanisms of electron acceleration. One is the betatron acceleration at the top of closed loops, which enhances the electron velocity perpendicular to the magnetic field line. The other is the inertia drift acceleration in open magnetic field lines, which produces antisunward electrons. The resulting velocity space distribution significantly deviates from an isotropic distribution. The former acceleration can be a generation mechanism of electrons that radiate loop-top nonthermal emissions, and the latter be of escaping electrons from the Sun that should be observed by in-situ measurements in interplanetary space and resulting radio bursts through plasma instabilities.Comment: 32 Pages, 11 figures, accepted by Ap

    RHESSI Observations of a Simple Large X-ray Flare on 11-03-2003

    Full text link
    We present data analysis and interpretation of a simple X-class flare observed with RHESSI on November 3, 2003. In contrast to other X-class flares observed previously, this flare shows a very simple morphology with well defined looptop (LT) and footpoint (FP) sources. The almost monotonic upward motion of the LT source and increase in separation of the two FP sources are consistent with magnetic reconnection models proposed for solar flares. In addition, we find that the source motions are relatively slower during the more active phases of hard X-ray emission; the emission centroid of the LT source shifts toward higher altitudes with the increase of energy; the separation between the LT emission centroids at two different photon energies is anti-correlated with the FP flux. Non-uniformity of the reconnecting magnetic fields could be a possible explanation of these features.Comment: To appear in the Astrophysical Journal Letters (12 pages, 4 figures
    • 

    corecore